Objectives:

- Precisely define the derivative of a function at a point a and its connection to the tangent line at a.

Remember:

A \qquad of a function $f(x)$ connects two points $(a, f(a))$ and $(a+h, f(a+h))$.

The slope of the secant line is:
This slope represents the \qquad of the function.

As $a+h$ and a get closer together, the secant line becomes more like the \qquad at a.

The slope of a tangent line is:
This slope represents the \qquad of the function at a and is called
the \qquad of $f(x)$ at a or \qquad .

Calculating the Derivative

(See the project from recitation for more examples - solutions will be posted on the course website.) Example: Find the derivative of $f(x)=3 x-3 x^{2}$ at a point a.

Example: Find the equation of the tangent line to $f(x)=3 x-3 x^{2}$ at $x=2$.
Step 1 Find the slope of the tangent line using the definition of a derivative.

Step 2 Use the slope and the point $(a, f(a))$ to find the point-slope form of the tangent line.

What does this tangent line look like? Graph $f(x)=3 x-3 x^{2}$ and the tangent line at $x=2$.

	2				
-2	-1	-2		1	2

Example: If $s(t)=3 t-3 t^{2}$ gives the position (ft) of an object as a function of time (min), what is the instantaneous velocity of the object at $t=4$ minutes?

Example: Use the graph to estimate the following:

