Objectives:		
• Precisely define the derivative at <i>a</i> .	ative of a function at a point a and its connection	n to the tangent line
Remember:		
Α	of a function $f(x)$ connects two points $(a, f(a))$ and $(a+h, f(a+h))$.	
The slope of the secant line is: This slope represents the	of the function.	
As $a + h$ and a get closer together, the secant line becomes more like the at a .		
The slope of a tangent line is:		
This slope represents the	of the funct	tion at a and is called
the of $f(x)$ at a	<i>a</i> or	

Calculating the Derivative

(See the project from recitation for more examples - solutions will be posted on the course website.) **Example:** Find the derivative of $f(x) = 3x - 3x^2$ at a point a.

Example: Find the equation of the tangent line to $f(x) = 3x - 3x^2$ at x = 2.

Step 1 Find the slope of the tangent line using the definition of a derivative.

Step 2 Use the slope and the point (a, f(a)) to find the point-slope form of the tangent line.

What does this tangent line look like? Graph $f(x) = 3x - 3x^2$ and the tangent line at x = 2.

Example: If $s(t) = 3t - 3t^2$ gives the position (ft) of an object as a function of time (min), what is the instantaneous velocity of the object at t = 4 minutes?

Example: Use the graph to estimate the following:

